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A statistical analysis of the “game of Life” due to Conway [Berlekamp, Conway, and Guy, Winning
Ways for Your Mathematical Plays (Academic, New York, 1982), Vol. 2] is reported. The results are
based on extensive computer simulations starting with uncorrelated distributions of live sites at ¢ =0.
The number = (s,t) of clusters of s live sites at time ¢, the mean cluster size 5(¢), and the diversity of sizes
among other statistical functions are obtained. The dependence of the statistical functions with the ini-
tial density of live sites is examined. Several scaling relations as well as static and dynamic critical ex-

ponents are found.

PACS number(s): 05.70.Ln

I. INTRODUCTION

The cellular-automaton (CA) game of Life (GL) intro-
duced by Conway in 1970 [1] has been extensively studied
in the last 20 years [1-6]. More recently some aspects on
self-organized criticality [4], subcritical behavior [S], and
time evolution of the density of living cells [6] in the GL
have been examined. A CA is a lattice system in which
the state of each lattice point is determined by local rules.
More exactly, the GL is a totalistic class-4 CA. Totalistic
means that the value of the cellular variable on a site de-
pends only on the sum of the values of its neighbors at
the previous time step, and not on their individual values
[7]. Class 4 (CA) designates an automaton whose
behavior may be determined only by explicit simulation
[8]. Class-4 CA would be capable of universal computa-
tion: with particular initial states, their evolution could
implement any finite algorithm. Universal computation
has been proved for the GL [9]. The simple algorithm of
the GL simulates the dynamical evolution of a society of
living organisms. Processes such as growth, death, sur-
vival, and competition are included. The rules are fully
deterministic; the state at time ¢ gives a precise deter-
mination of the state at time ¢ + 1. The reverse, however,
is not true, i.e., the GL exhibits irreversibility [1]. More-
over, there are Life configurations that can only arise as
the initial state, because they have no ancestors [1].

Although a lot of effort has been devoted to the under-
standing of the details of stable finite configurations [1],
much less is known on the statistical properties of the
GL. This is one of the main motivations for the present
work. Here we report an extensive statistical analysis of
the GL dynamics based on computer simulations. Previ-
ous interest in the GL has focused on the generation of
complexity from specific initial configurations; indeed,
the system has been suggested to mimic aspects of the
emergence of complexity in nature [1]. The approach
adopted here is different since it is inspired in statistical
studies on other nonequilibrium (dissipative) processes
such as fragmentation and consumption [10,11]. In our
work a stochastic element is introduced at time ¢t =0 with
a random distribution of live sites chosen with probability
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p- Some of the questions that are considered here include
(i) the distribution function z (s, t) of clusters of s live sites
at time ¢, and (ii) the dependence of statistical functions
describing the evolution of the GL with the initial condi-
tions and with the size of the lattice L.

Although the GL is not related in any obvious way to
specific physical or biological systems, there are various
considerations which have led us to examine its proper-
ties. From the physical point of view we are interested
in the nonequilibrium dynamics of the GL in connection
with other nonequilibrium dynamics in dissipative pro-
cesses as mentioned in the preceding paragraph. In par-
ticular we seek scaling laws in the GL dynamics.
Theoretical and experimental investigations have shown
that when certain spatially extended nonequilibrium sys-
tems are driven, they naturally evolve into a critical state
characterized by spatial and temporal power laws
[10,12—15]. The occurrence of such critical states in
nonequilibrium systems is spontaneous; it does not re-
quire, as in equilibrium systems, the tuning of experimen-
tally adjustable parameters to particular values or critical
points. Several CA models have been shown both numer-
ically and analytically to exhibit power laws under gener-
ic conditions [13,16]. The characterization and under-
standing of these scaling laws has become an important
and surprisingly difficult problem. As examples we have
diffusion-limited aggregation [12] and self-organized criti-
cality [13] which are based on simple physical models,
but whose detailed prediction of their power-law correla-
tions has proven illusive. The simulations reported here
demonstrate that similar power laws have evolved in GL.
From the biological point of view, we are interested in
the study of the complexity in the GL. Here complexity
is evaluated by means of diversity. In this work we re-
strict ourselves to the study of cluster size diversity, i.e.,
the number of different sizes of clusters of live sites at a
particular time [10]. In nature, the term diversity occurs
in several contexts, as for example, in connection with
forms [17], species [18], populations [19], and sizes [10].
The diversity of sizes is particularly appropriate for a
quantitative numerical study. An alternative scaling rela-
tion for the diversity of sizes of clusters is reported for
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the GL.

The structure of this paper is as follows. In Sec. II we
give a brief description of our simulations. Results are
discussed in Sec. ITI. We conclude in Sec. IV with a sum-
mary of the principal results.

II. SIMULATIONS

In this paper we study the statistics of the dynamics of
the GL. The system is a two-dimensional square lattice
of linear size L with the sites having two states, designat-
ed “live” or “dead.” In our simulation L varied from 30
to 1100. We started at ¢t =0 with a random distribution
of live sites with probability p. The rules for the evolu-
tion of the GL were implemented and at each time step
the number n(s,t) of clusters of s connected live sites
(sites that are nearest neighbors of live sites) at time ¢ was
measured. The simulation was interrupted when the den-
sity and average coordination remained constant or
displayed simple periodic oscillations for ten successive
generations (the stabilization regime). We have con-
sidered extensively the dependence of the results on p.
This probability in our work varies in intervals of 0.05
from p =0.05 to 0.90. The moments of n (s,t), diversity
of sizes, and the average coordination of live sites are
some statistical quantities which were studied as a func-
tion of time. Our results are averages varying from five
experiments (for L =1100) to 200 experiments (for
L =30). The rules of the GL invented by Conway [1] are
the following.

(i) Birth: A site that is dead at time ¢ becomes live at
t +1 only if exactly three of its eight neighbors were live
at t.

(ii) Death by overcrowding: A site that is live at ¢t and
has four or more of its eight neighbors live at ¢ will be
dead by time # +1.

(iii) Death by exposure: A live site that has only one live
neighbor, or none at all, at time ¢, will also be dead at
t+1.

(iv) Survival: A site that was live at time ¢ will remain
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live at # +1 if and only if it had just two or three live
neighbors at time ¢.

All births and deaths take place simultaneously.
Neighbors are defined to be the eight sites surrounding
the site under consideration, or in other terms, the first
and second crystallographic nearest neighbors in a square
planar lattice.

III. RESULTS

A basic quantity to be examined is the total number of
live clusters at time t, N(t)=3.n(s,t), i.e., the zeroth
momentum of n(s,?). As explained in the beginning of
the preceding section, a cluster of size s is a unit formed
by s live sites connected within the first neighborhood.
This criterion used to define a cluster is adopted in the
statistics of the present work since the GL scaling func-
tions are more clearly defined for this kind of neighbors.
If other definitions of cluster are used, say extending out
to second or third neighbors, slightly different results are
obtained. However, we are not interested in this type of
detail here. In particular, in Ref. [20] we make a brief
discussion of the relation between the criteria of neigh-
borhood and other statistical functions for the GL. The
function N (¢) is shown in Fig. 1 for initial occupation
probability 0.15 (a), 0.35 (b), 0.55 (c), and 0.75 (d) on a
square lattice with L =300. The plot refers to an average
over ten similar experiments. For 0.15=p <0.75 there is
a scaling region along one to two decades in time where
N (1)~ 031£0.03 The inset shows in detail the behavior
of N (z) for p =0.35. To obtain the smooth line of this in-
set we have used 50 bins to accommodate the data points.
For p <0.15 or p 20.75 the behavior of N (#) is similar to
the curve d in Fig. 1, i.e., no scaling region is clearly
identified. In general we have observed that the statisti-
cal functions describing the GL dynamics with the initial
conditions considered in this article are divided in two
groups. In a first group, for 0.15<p <0.75, it is possible
to identify a scaling region and well-defined critical ex-
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FIG. 1. Log-log plot of the
total number of live clusters for
the GL, N(t), as a function of
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the time z. The initial occupa-
tion probabilities are p =0.15
(a), 0.35 (b), 0.55 (c), and 0.75 (d).
The data refer to simulations on
square lattices of size L =300,
and the averages are over ten ex-
periments. The inset shows N (t)
for p =0.35 when 50 bins along
the abscissa are used to accom-
modate the data points.
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FIG. 2. Log-log plot of the
time dependence of the diversity
of live clusters, D(t). D(t)
presents a scaling region in the
same time interval of N (¢). The
enlarged part shows D(t) for
p =0.35 when 45 bins along the
t axis are used. The inset ex-
hibits the evolution of D(t) for
p=0.15 (a), 0.35 (b), 0.55 (c),
and 0.75 (d), without the use of
bins.
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ponents. In a second group, including small value of p
(p <0.15) or large values of p (p =0.75), it is not possible
to identify any scaling region. Bagnoli, Rechtman, and
Ruffo [6] recently studied the dependence of the asymp-
totic density of live sites p_, versus the initial density
po=p in the GL. It is interesting to observe that these
authors have found that for 0.15<p <0.75 p,, does not
depend on p, and assumes a constant value near
P, =0.028. Moreover, they found that for p <0.15 or
p >0.75, p,, varied rapidly with p,. So, in our simula-
tions we have found that (i) the occurrence of temporal
scaling is apparently connected with the region where p,
is not dependent on p, (or p), and (ii) the absence of tem-
poral scaling is connected with those regions where p,
depends on p,,

1000

The diversity D (¢) (number of different sizes of live
clusters at time ¢ irrespective of shape) is shown in Fig. 2
for experiments on lattices with L =150. The inset of
Fig. 2 presents D (¢) for p =0.15 (a), 0.35 (b), 0.55 (c), and
0.75 (d). As observed in Fig. 1, for cases (a), (b), and (c),
D(t) has a power-law scaling of the form
D(t)~¢ 70242002 byt for p =0.75 (d) the time scaling
disappears. In Fig. 2 we illustrate the quality of the
power-law behavior for D (z) for p =0.35. The (enlarged)
smooth line of Fig. 2 corresponding to p =0.35 is ob-
tained by distributing the data points in 45 bins along the
t axis. In comparison with other nonlinear dissipative
dynamical processes generating distributions of clusters
[10,11], the GL presents wider intervals for the dynami-
cal scaling even if small lattice sizes are used.
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1 FIG. 3. Log-log plot of the
time evolution of the average
coordination number g¢(z) for
the live sites. The enlarged plot
refers to p =0.35 (50 bins) and
the other parameters are the
same as those in Fig. 2.
q (1)~ 004£0.005 (Sec TI, third
paragraph). The inset shows
q(t) for the values of p con-
sidered in Figs. 1 and 2 (without
bins).
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The process of formation of live clusters in the GL in-
volves a continuous change in connectivity. The average
coordination number g (¢) for the live sites gives a direct
measure of this change [11]. As shown in Fig. 3, ¢ (¢) de-
cays as the power law g ~¢~%%4+0-905 41619 one to two
decades in ¢. The enlarged part of this figure refers to an
ensemble of ten experiments with lattices of size L =150
and p =0.35. In this case we have used 50 bins along the
t axis to accommodate the data points. The inset shows
the average coordination number for p =0.15 (a), 0.35
(b), 0.55 (c), and 0.75 (d). As can be seen from this inset g
scales with ¢ with the same exponent, irrespective of p,
even for large values of the initial occupation probability
(p =0.75). The power-law decay of ¢ (¢) is apparently a
characteristic of the GL since ¢ (¢) in general does not ex-

hibit this kind of behavior for other nonlinear cluster dy-
namics [10,15,21,22]. The mean cluster size 5(¢) is anoth-
er quantity of interest. In the GL 5(¢) decreases with ¢
monotonically in a large interval as §~¢ 008+0.01 jp.
respective of p. For L =150 this time interval covers
more than two decades in ¢ as shown in Fig. 4 for

p =0.35. The inset of Fig. 4 shows the complete varia-

tion of § from ¢ =1 to the stabilization regime. In the en-
larged part of Fig. 4 the data points are distributed in 50
bins along the ¢ axis. From the power law for g(z) and
5(¢) we conclude that these two quantities are related by
the simple expression 5(¢)~¢(z)? in the scaling region.
The average number of clusters of s live sites in the sta-
bilization regime, n  (s), is shown in Fig. 5 for a lattice
with L =300 and for initial occupation probabilities 0.15

0.1 -

FIG. 5. Log-log plot of the
average number of clusters of s
live sites in the stabilization re-
gime, n,(s), on a lattice with
300 sites, for p =0.15 (O), 0.35
(0), (0.55 (A), and 0.75 (). A
sudden transition occurs in this
case near s =4.

1.0 1.6 25



48 NONLINEAR DYNAMICS OF THE CELLULAR-AUTOMATON ...

3349

600 . ;

401

268

n(s,t)

179

120

80 :

FIG. 6. Log-log plot of the
number of live clusters with one
and two live sites as a function
of time, for the GL on a lattice
with L =300 (see text, Sec. III,
fourth paragraph).
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(open square), 0.35 (open circle), 0.55 (open triangle), and
0.75 (open diamond). For this size the stabilization re-
gime begins at about ¢t =4000. The cluster distribution in
Fig. 5 refers to t =10000. As can be seen from Fig. 5,
n ., (s) undergoes a sudden transition near s =4 in the sta-
bilization regime (this plot refers to an average over ten
similar experiments).

In Fig. 6 we show the number of live clusters of size
s =1, and s =2, as a function of ¢ for p =0.35. The ¢ axis
in this figure was divided in 45 bins. We obtain that
n(s=1,0)~t"", w,=0.3340.05, and n(s=2,5)~1"?,
w, =0.2310.05 with both critical exponents independent
of p, provided 0.15<p <0.75. For p <0.15 or p 20.75,
however, it is impossible to find a dynamic scaling regime
for both n (s =1,t) and n (s =2,t). Possibly, n(s,t)~t "%,

1000

with w ~0.3 for any (small) value of s in the limit L — o
and that the difference observed in the exponents
(w,#*w,) is a finite size effect. Furthermore, this ex-
ponent w would be the same exponent that scales N and z.

We have seen in the preceding paragraphs that the GL
presents a scaling region before the stabilization regime
where N(r)~t 0313003 angq 5(7)~¢ 0082001 Thig
means that the total population (or mass) of live sites
evolves as m (2)=N (£)s(t)~t %300 We cannot for-
get that this power-law relation for m (¢) is valid only in
the interval 0.15<p <0.75. For p <0.15 or p >0.75
there is no clear scaling for N(z¢) or m (¢). Figure 7 ex-
hibits the dependence of m (¢) for the GL on lattices with
size L =300 and probabilities p =0.15 (a), 0.35 (b), 0.55
(c), and 0.75 (d). All curves represent averages over ten
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FIG. 7. Log-log plot of the
total population of live sites,
m (t), on a lattice with 3007 sites
for p =0.15 (a), 0.35 (b), 0.55 (c),
and 0.75 (d). In the first three sit-
uations we have m ~p ~0-39+0.04
(Sec. III, fifth paragraph).
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FIG. 8. Log-log plot of the number mg,, of live sites as a
function of the radius of gyration R, for p =0.35 (O) and
p =0.70 (O). The six values of R, used in this plot correspond
to simulations on lattices of sizes L =30, 100, 200, 300, 400, and
500. Each data point represents an average over five similar ex-
periments (see text, Sec. III, sixth paragraph).

similar experiments. Here again, as in Figs. 1, 2, and 6,
there is indeed evidence of a nontrivial scaling regime for
the density of live sites, before the onset of stabilization.
Finally we have investigated how the population of live
sites in the stabilization regime, m,,, scales with the ra-
dius of gyration R,. This quantity is defined as

R,=V'3, (r;—r1;)?/2m?, where r; denotes the position
of the live site i from the center of gravity and m is the
total po%ulation considered. As shown in Fig. 8,
M gap ~ R ™™, with 8, =1.88 for p =0.35, and 8,,=2.0
for p =0.70. Our overall estimate is that m,, scales with
the radius of gyration R, as R;-***%% jrrespective of the
value of the initial occupation probability. These results
suggest that Life distributes itself (within the statistical
uncertainties) on a disconnected set of dimension §=2.
The plots in Fig. 8 refer to simulations in lattices of sizes
L =30, 100, 200, 300, 400, and 500, and each point
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represents an average on five similar experiments. Re-
cently Bak, Chen, and Creutz [4] reported that the num-
ber of live sites in the GL increases with the distance »
from a given live site as r17 i.e., the GL distributes itself
on a fractal set of dimension 1.7. The results of this para-
graph do not agree with this conclusion. We believe that
the value 1.7 found by Bak, Chen, and Creutz is a conse-
quence of the relatively small lattices (150X 150) used in
Ref. [4]. Anyway, computer simulations on larger sys-
tems are needed to decide this specific question.

IV. CONCLUSIONS

This paper presents the first extensive statistical
description of the famous Conway game of Life [1] con-
sidering as initial states the random occupation with live
sites with probability p on lattices of size L up to 1100.
For initial occupation probabilities satisfying
0.15=<p <0.75, each one of the different statistical func-
tions ¢ describing the dynamics of the GL may be divid-
ed in general in three intervals: First, a region extending
from ¢ =0 to t ~L!/? presenting large fluctuations in ¢;
second, a scaling region characterized by a power-law
dependence between @ and ¢, from t~L'"? to t ~L*/3;
and finally the ‘““steady state” or stabilization region (the
SOC state of Bak, Chen, and Creutz [4]) extending from
t~L*"? to infinite and characterized by small fluctua-
tions of @ around some average value ¢, These results
are obtained from extensive numerical simulations on lat-
tices with different values of L. The critical exponents
obtained in the scaling region are robust and do not de-
pend on p, for 0.15<p <0.75. The dynamics of the GL
examined here is compared with other nonequilibrium
dissipative dynamics of physical, chemical, and biological
interest recently studied [10,11,15,22]. For low initial oc-
cupation (p <0.15) or high density occupation (p =0.75)
the scaling region disappears, and now the domain for
large fluctuations of ¢ extends from ¢t =0 to t~L*"
This region is followed by the ‘“‘steady state” character-
ized by small fluctuations around an average value.
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